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Deforming Mesh for Computational Aeroelasticity
Using a Nonlinear Elastic Boundary Element Method

Xiao-Wei Gao,¤ Ping-Chih Chen,† and Lei Tang‡

ZONA Technology, Inc., Scottsdale, Arizona 85251

A nonlinear elastic boundary element method (NBEM) approach is developed as an innovativedeforming mesh
generator for computational aeroelastic simulation. The computational � uid dynamics (CFD) mesh is assumed
to be embedded in an in� nite nonlinear elastic medium of a hardening material, leading to the formulation of a
pseudononlinearelastostatic problem. Whereas the CFD surface mesh is treated as a boundaryelement model and
the CFD � ow� eld grid as domain sample points, the NBEM approach solves Navier’s equations using a particular
solution scheme that removes the requirement of the domain integral in the conventional NBEM formulation.
The NBEM approach has a uni� ed feature that is applicable to all mesh systems, including unstructured, multi-
block structured, and overset grids. An optimization strategy is employed to determine the optimum hardening
material properties by minimizing the mesh distortion in the viscous region where grid orthogonality must be
preserved. Three test cases are performed to demonstrate the robustness and effectiveness of the NBEM approach
for deforming mesh generation.

Introduction

D URING the past two decades, research on the application of
computational � uid dynamics (CFD) methods to aeroelastic

analysis has been rapidly progressing. To date, implicit Navier–
Stokes algorithms with the geometric conservation law and
Newton-like subiterations for time-accurate aeroelastic simulation
of three-dimensional elastic bodies have been well established.1¡3

Production-ready computer codes such as CFL3D (Ref. 4),
ENS3DAE (Refs. 5 and 6), and ENSAERO (Ref. 7) are nearly
completed and available to the U.S. aerospace industry. However,
application of these CFD codes on complex con� gurations such as
a whole aircraft with external stores or nacelles is still hampered
by the lack of a robust and ef� cient deforming mesh algorithm. In
general, there are two technical issues involved in the deforming
mesh algorithm for CFD aeroelastic simulations: 1) data transferal
between the structural � nite element (FEM) grid and CFD surface
grid and 2) deforming the CFD � ow� eld grid.

Data Transferal Between the Structural FEM Grid
and the CFD Surface Grid

Here, the CFD surface grid is de� ned as the mesh on the surface
of the bodies where the moving boundarycondition is imposed. Be-
cause the CFD surface grid and the structural FEM grid could be
considerablydifferent, the aeroelasticcomputationrequires the data
transferalbetween these two grid systems. This technical issue usu-
ally involves the transferal of displacements computed at the FEM
grid to the CFD surface grid and the transferalof loads computed at
the CFD surface grid back to the FEM grid.

Deforming the CFD Flow� eld Grid
Once the displacementsat the CFD surfacegrid are obtainedfrom

the FEM grid by the data transferalmethodology just discussed, the
CFD deformed � ow� eld grid must conform to the deformed CFD
surface grid by a deforming � ow� eld grid algorithm. In the time-
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marching aeroelastic simulation, this deformed � ow� eld grid must
be updated at every time level according to the instantaneous de-
formed CFD surface grid positions.These deformed CFD � ow� eld
grids should satisfy four basic requirements:

1) No grid line crossover may occur to ensure the positivity of
the cell volume.

2) The grid orthogonality must be, at least nearly, preserved. It
is important to ensure such orthogonalityin the viscous region near
the surface grid.

3) The transition of the deformation from that of the surface grid
to the zero deformation in the far-� eld grid shouldbe kept as smooth
as possible.

4) The clustering of the near-body grid cannot be compromised
as the body deforms. The grid must maintain its clustering in the
viscous layer.

Using an innovativestructuralboundaryelement method (BEM),
Chen and Jadic8 and Chen and Hill9 have developeda data transfor-
mation technique, called the BEM solver, that generates a universal
spline matrix to relate directly the displacementsand loads between
the CFD structural grid and the FEM grid. During the development
of the BEM solver, it was realized that the BEM can also be em-
ployedas a deforming� ow� eld grid algorithm.This can be achieved
by assuming the � ow� eld grid to be embedded in an in� nite non-
linear elastic medium of a hardeningmaterial. In this paper, we will
focuson the discussionof such an approachfor deforming � ow� eld
grid generation. Results of three test cases using such an approach
are also shown to demonstrate its robustness and applicability for
CFD computations.

Review of Existing Deforming Grid Algorithms
There are generally two kinds of approaches to generate deform-

ing grids: the algebraic method and the pseudostructural method.
The most commonly used algebraic method is the trans� nite inter-
polation (TFI) scheme with the mesh orthogonalityconstraintat the
deforming surface.10 The TFI scheme offers an ef� cient deforming
grid algorithm for structured meshes, but it would be dif� cult to
apply TFI on an unstructured mesh. Also, an extension of the TFI
scheme to a multiblockstructuredmesh for a complexcon� guration
is by no means a trivial task.

The spring analogy scheme, � rst developedby Batina,11 belongs
to thepseudo-structuralmethodsthatmodelthemeshas a networkof
lineal springs and solve the static equilibriumequationsfor this net-
work to determinethe new locationsof the grid points.Farhat et al.12

proposed a modi� ed spring analogy by adding additional nonlinear
torsion springs to avoid the nonpositive cell volume problem asso-
ciated with the lineal spring network. By the use of a hybrid spring
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Fig. 1 BEM for deforming � ow� eld grid.

analogy-TFI approach, Bartels13 has shown a two-dimensional
deforming one-block structured mesh for an oscillating spoiler
study. Because the numerical technique for solving the deforma-
tion of the spring network is essentially the structural FEM that
inherently requires an unstructuredgrid, the spring analogy scheme
can be directly applied to generate the deforming grid of the un-
structured mesh. On the other hand, because the structural FEM
does not allow grid mismatch between adjacent elements, the ap-
plication of the spring analogy scheme on a multiblock structured
mesh with grid mismatch on the block interfaces would be dif� cult.
Based on the same reason, it is obvious that the application of the
spring analogy on an overset mesh is not feasible.

Based on the precedingdiscussion,it is concludedthat neither the
TFI techniquenor the spring analogy scheme can be generalized to
deal with any given mesh system, that is, unstructured, multiblock
structured, and overset grids. By the use of a linear boundary ele-
ment method, Chen and Jadic8 developed an exterior BEM solver
that has a uni� ed feature for the deforming � ow� eld grid gener-
ation of all grid systems. When it is assumed that the CFD mesh
is to be embedded in an in� nite linear elastic medium where the
CFD surface grid is treated as a deformable hollow slit (Fig. 1), a
pseudoelastostaticproblem with an in� nite elastic domain can be
formulated. This is a perfect boundary element problem because
BEM only requiresmodeling the surface of the body and, therefore,
is ideally suitable for dealing with the in� nite elastic domain.

The starting point for the derivation of the pseudoelastostatic
BEM equations are Navier’s (equilibrium) equations in terms of
displacement ui , which in tensor notation have the form

Gui; j j C .G C ¸/u j; ji D 0 (1)

where ¸ is the Láme coef� cient and G is the shear modulus.
The BEM is basedon the boundary integral equationsof Navier’s

equations. The result is known as Somigliana’s identity that relates
the displacement at any point p (Fig. 1) to the displacement us and
tractions ts on the boundary, that is,

u i .p/ D
Z

0

u¤
ists d0 ¡

Z

0

t¤
isus d0 (2)

where u¤
is and t¤

is are the Kelvin kernelsof the displacementand trac-
tion, respectively, and 0 denotes the boundary of the body. When
the CFD surface grid points are connected with the boundary ele-
ments to form a discretized BEM model, Eq. (2) can be recast into
the following matrix form:

u.p/ D Gspts ¡ Hspus (3)

where Gsp and Hsp are the so-called traction and displacement co-
ef� cient matrices, respectively, and the subscripts sp refer to the
surface-to-�ow� eld point in� uence.

A special treatment of the boundary integral equation (2) is re-
quired for points on the boundary. In matrix form, the equation that
relates the displacement us and traction ts on the boundary is

Hssus D Gssts (4)

where the subscripts ss refers to the surface-to-surfacein� uence.

Substituting Eq. (4) into Eq. (3) yields the exterior BEM solver
that reads

u.p/ D Bus (5)

where

B D GspG¡1
ss Hss ¡ Hsp (6)

Note that the matrix B is independent of the deformation us and
invariantduring the time-marchingaeroelasticcomputationbecause
it is evaluated on the undeformed mesh. Also, because the point p
can be assigned anywhere in the � ow� eld, the generationof matrix
B does not require the connectivityinformationof the � ow� eld grid
points and, therefore, is independentof the mesh system. Thus, the
exterior BEM solver offers several technical merits over the spring
analogy scheme as follows:

1) It can be generalized to deal with all grid systems.
2)Becausethecomputationofu.p/ is a point-by-pointprocedure,

it can be easily parallelized.
3) Because the elastostatic formulation of BEM involves both

the volume modulus (equivalent to the lineal spring) and the shear
modulus (equivalent to the torsion spring) of a continuous elastic
medium, the transition of the grid deformation is always smooth.

4) The zero deformation requirement in the far-� eld grid is inher-
ently satis� ed becauseof the in� nite elastic medium characteristics.

However, for problems with a relatively large mesh motion am-
plitude, the exterior BEM solver suffers from the shortcoming of
the linear elastic assumption.An example of this is shown in Figs. 2
and 3. Figure 2 shows a given undeformedviscousmesh of a NACA
0012 airfoil. By the impositionof a 20-deg pitch-up angle about the

Fig. 2 Given undeformed mesh of NACA 0012 airfoil.

Fig. 3 Unacceptabledeformed mesh by the linear exterior BEM solver.
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Fig. 4 Stress (¾ij )–strain
(") relationshipofhardening
material.

50% chord, the resulting deformed mesh using the exterior BEM
solver is depicted in Fig. 3. (For clarity, only a coarse deformed
mesh is shown.) A large distortion of the mesh to the extent that
grid line crossover occurs near the leading and trailing edges can
be seen. Also, the grid orthogonality in the viscous region is de-
stroyed. Because the imposed displacement occurs on the surface
mesh only, large elastic stresses are concentrated near the surface
and decay rapidly toward the far � eld. Because of the linear elastic
assumption, a large stress can induce a large strain, implying large
distortion of the mesh in the high-stress region.

To overcome this problem, it is apparent that a nonlinear elastic
medium of hardeningmaterial must be employed. A typical stress–

strain relationship of the hardening material is shown in Fig. 4.
Within this hardeningmaterial, high stresswill not necessarilyyield
high strain, thereby reducing the mesh distortion in the high-stress
region. However, solving the elastostatic problem with hardening
material requires a nonlinear elastic BEM approach.

Nonlinear Elastic BEM Formulation
In nonlinearelasticBEM for strainhardeningmaterials, the stress

is no longer the linear response to the strain, and the quantities are
usually expressed in incremental forms. With reference to Fig. 4,
the stress increment can be decomposed into two parts, as follows

P¾ i j D P¾ e
i j C P¾ N

i j (7)

where the over dot indicates that it is an increment and P¾ e
i j is the

linear part, which is determined by Hook’s law as

P¾ e
i j D G Di j kl P"kl (8)

Di j kl D [2º=.1 ¡ 2º/]±i j ±kl C ±ik ± jl C ±il ± jk (9)

in which º is the Poisson ratio, G is the shear modulus, and P"kl is
the strain increment.

The nonlinearstress increment P¾ N
i j is assumed to have the similar

relationship to Eq. (8), but the shear modulus is a function of strain,
that is,

P¾ N
i j D GG 0.J1; J2/Di jkl P"kl D G 0.J1; J2/ P¾ e

i j (10)

To minimize the mesh distortion, the high-stress region near the
surface mesh suggests that G 0.J1; J2/ should represent a strongly
hardeningfunctionof strain.Such a functionis expressedas follows:

G 0.J1; J2/ D e® J1 C ¯ J2 (11)

Here, ® and ¯ are weighting factors to measure the contributionsof
the effectivevolumestrain J1 and the shear strain J2 to the hardening
behavior of G 0.J1; J2/. J1 and J2 are the � rst and second invariants
of the strain tensor and the deviatorical strain tensor, respectively,
which are de� ned as

J1 D ."kk /2 (12)

J2 D 1
2
"0

i j "
0
i j (13)

where "0
i j is the deviatorical tensor

"0
i j D "i j ¡ 1

3 "kk±i j (14)

J1 and J2 are related to volume and shear strains, respectively.

Navier’s equations with the nonlinear stress P¾ N
i j can be written as

G Pui; j j C .G C ¸/ Pu j; ji D ¡ P¾ N
i j; j (15)

In the conventionalnonlinearBEM formulation,the integral bound-
ary equations for Navier’s equation (15) involve a domain integral
of the nonlinear stress. The computations of this domain integral
require the discretizationof the problem domain into volume cells.
This destroys one of the major advantages of adopting the BEM as
a mesh-system independent algorithm. Banerjee and Henry14 pro-
posed a particular solution scheme that removes the requirement of
the volume cells. This particular solution scheme assumes that the
solutions of Eq. (15) consist of two parts, that is,

Pui D Puc
i C Pu p

i (16)

where Puc
i is referred to as the complementary solution, which satis-

� es the homogeneous Navier’s equations (1), and can be obtained
from the linear BEM equations described in the preceding section.
The displacement Pu p

i in Eq. (16) is referred to as the particular
solutions, which satis� es Eq. (15).

Before solution, the distribution of the nonlinear stresses P¾ N
i j are

unknown. We assume that P¾ N
i j can be derived from a biharmonic

function Ph i j , that is,

P¾ N
i j D ¡Ph i j;mmnn (17)

Based on this assumption, the displacement particular solution can
be found15 as

Pu p
i D .1=G/Phi j; j kk ¡ [1=2G.1 ¡ º/]Phk j; jki (18)

From Eqs. (17) and (18), we can see that, once we know the dis-
tribution of Phi j , the particular solutions for nonlinear stresses and
displacements can be determined. To achieve this, a global shape
function C.x; dn/ (Ref. 14) is used for interpolation of Phi j , as
follows:

Ph i j .x/ D
NX

n D 1

C.x; dn/ PÁi j .dn/ (19)

where PÁi j are constants to be determined and

C.x; dn/ D A.½4 ¡ b½5/ (20)

Here, A is generallytakenas the fourthpower of some characteristic
length associatedwith the BEM model, b can generallybe set equal
to unity, and ½ is the distance between x and dn . Usually, dn are
chosen to be the boundary nodes and some sample points in the
domain.

By substituting Eq. (19) into Eqs. (17) and (18), and with the
results being written in matrix form, we have

P¾ N D K PÁ (21)

Pu p D D PÁ (22)

in which K is a diagonalmatrix and PÁ is a vector of PÁi j at all sample
points. The elements are

k.x; dn/ D C.x; dn/;kkll D A.120 ¡ 360b½/ (23)

The matrix D in Eq. (22) is formed from the following expression:

di j k.x; dn/ D .1=G/C.x; dn/; jll ±ik ¡ [1=2G.1 ¡ º/]C.x; dn/; jki

(24)

Note that the matrix K in Eq. (21) is invertible, and so the vector PÁ
can be expressed in terms of the vector P¾ N . With this in mind, and
using the preceding linear BEM equations together with Eqs. (7),
(16), (21), and (22), the nonlinear BEM equations (in matrix form)
can be formed as follows:

Ab PX D PY b C Eb P¾ N (25)

P¾ D Ax PX C PY ¾ C E¾ P¾ N (26)
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where Ab and Ax are coef� cient matrices formed by boundary in-
tegrals and Eb and E¾ are nonlinear coef� cient matrices formed by
global functions. Note that Eqs. (25) and (26) are very similar to
those derived for elastic–plastic problems16 where the matrices Eb

and E¾ are formed by domain integration.
Combining Eqs. (7), (10), (25), and (26) yields

A P¾ e D PY (27)
where

A D I C
¡
I ¡ E¾ ¡ Ax Ab¡1

Eb
¢
G0 (28)

PY D PY ¾ C Ax Ab¡1 PY b (29)

The system of Eqs. (27) is a nonlinear equation set because the co-
ef� cient matrix A is the function of strains. The standard Newton–

Raphson iterative scheme16 can be used to solve this equation set.
Close inspection of Eq. (28) shows that only the matrix G0, which
is a diagonal matrix and formed from Eq. (11), is the function of
strains. Therefore, quick convergence can be achieved in the itera-
tion procedure.

The particularsolutionschemedescribedforsolvingthenonlinear
Navier’s equation is an ideal solution scheme for CFD deforming
grid generation. Only the CFD � ow� eld grids are used as sample
points in the domain, thereby removing the need of connectivity
information of the CFD mesh system. For large-amplitude surface
deformation, the computational procedure involves an incremental
process that solves the unknown boundary traction and also builds
up informationabout the incrementalsolutionsat the domain sample
points.

Optimization for Optimum Hardening
Material Properties

Because the present NBEM approach is based on a pseudoelas-
tostatic formulation, the hardening behavior of the elastic medium
(shown in Fig. 1) dominates the quality of the deformed mesh. To
determineautomaticallytheoptimumhardeningmaterialproperties,
we use an optimizationprocedure to search for the best values of ®
and ¯ in Eq. (11). The key issue in formulatingsuch an optimization
procedure is how to de� ne an objective function that can relate the
quality of the deformed mesh to the design variables, namely, ® and
¯ . Because minimum strain is equivalent to minimum mesh dis-
tortion, the objective function to be minimized in the optimization
procedure is de� ned as

f .®; ¯/ D
nX

l D 1

."i j "i j /l (30)

where f is the objective function, "i j is the strain tensor at grid l,
and n is the number of grid points where the strain tensor "i j is
evaluated. These grid points are selected like those in the viscous
region, where preserving the grid orthogonality is important.

Test Cases and Discussion
Three two-dimensionaltest cases are selected to demonstrate the

robustness and effectivenessof the NBEM approach.CFD compu-
tations using the deformed mesh generated by the NBEM are per-
formed, and the resulting pressure distributions are used to assess
the quality of the deformed mesh.

Case 1: NACA 0012 Airfoil at 20-Degree Pitch-Up
Angle at About 50% Chord

For a given undeformed mesh of a NACA 0012 airfoil (Fig. 2), a
surface deformationcorrespondingto a 20-degpitch-upangle about
the 50% chord is imposed on the surface mesh. The overall de-
formed mesh computedby the NBEM approach is shown in Fig. 5a.
As expected, the far-� eld mesh is practically undeformed because
of the characteristics of the in� nite elastic medium. The zoomed-
in view of the deformed mesh near the airfoil surface depicted in
Fig. 5b clearly shows the smooth transitionof the deformationfrom
the surface mesh to the far-� eld mesh. For clarity, the deformed
mesh near the leading and trailing edges is further expanded and
shown in Figs. 5c–5f. Note that the orthogonality of the deformed
mesh in the viscous region is preserved. The transition of the de-
formed mesh from the trailing edge to the wake region appears to

a)

b)

c)

d)

e)

f)

Fig. 5 Deformed mesh of NACA 0012 airfoil section at 20-deg pitch-up
angle at about 50% chord.

be smooth, forming a curved wake surface grid whose deformation
decays rapidly from the trailing edge to downstream.

In theory, the CFD result of a deformed mesh at 20-deg pitch-up
angle and 0-deg angle of attack (AOA) (µ D 20 deg, AOA D 0 deg)
should be the same as that of the correspondingundeformedmesh at
µ D 0 degand AOA D 20 deg if thedeformedmesh is of goodquality.
To verify this, two Navier–Stokes computations using the CFL3D
code with the Spalart–Allmaras model were performed at M D 0:7
and Re D 2:0 £ 105, one on the deformed mesh at AOA D 0 deg
and the second one on the undeformed mesh at AOA D 20 deg.
Excellent agreement of the surface pressure, CP , distributions for
these two meshes is obtained and shown in Fig. 6. Note that at a
20-deg incidence angle, the NACA 0012 is already beyond its stall
AOA. This is to say that the behavior of the separated � ow on the
uppersurfaceof theairfoil is verysensitiveto thequalityof themesh,
particularlyat the leading edge. The excellent agreement of the CP

shown in Fig. 6 clearly demonstrates the capability of the NBEM
approach for high-qualitydeforminggrid generation in terms of the
smoothness and orthogonalityof the mesh.

Case 2: NACA 0012 Airfoil at 10-Degree
Trailing-Edge Flap De� ection Angle

Control surface de� ection creates a discontinuity in slope across
the hinge. For the pseudostructuralmethod like the spring analogy,
this gives a stress concentrationaround the hinge that may destroy
the quality of the deformed mesh. To show that this is not the case
for the NBEM approach,a 10-deg trailing-edge� ap de� ection angle
with hingeat the 75% chordof the NACA 0012airfoil is imposedon
the surface mesh. Figure 7 shows the NBEM computed deformed
mesh where the smoothness and the near-surface orthogonality of
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Fig. 6 Steady pressure of deformed and undeformed mesh of NACA
0012 airfoil section at 20-deg pitch-up angle at about 50% chord,
Mach 0.7, and Re = 2.0 £ £ 105 .

Fig. 7 Deformed mesh of NACA 0012 airfoil section with a 10-deg
trailing-edge � ap with de� ection angle.

the deformation can be clearly seen. The CP distribution of this
deformed mesh (Fig. 8) computed by the CFL3D code at M D 0.7,
AOA D 0 deg, and Re D 2:0 £ 106 shows a spike on the upper sur-
face at the hinge location due to the slope discontinuity. This ex-
pected spike indicates that the slope discontinuity at the hinge is
well captured by the NBEM approach.

Case 3: Mesh Morphing from NACA 0016 Airfoil
to NLR 7301 Airfoil

Changing the surface mesh to obtain a conforming mesh accord-
ing to the new surface, but without directly using a grid generator,
is de� ned here as mesh morphing. Mesh morphing is an essential
element involved in aerodynamicoptimizationusing CFD methods
because it is an automated procedure and can provide an updated
mesh at each design cycle. To show that the NBEM approach can
be used for mesh morphing, a given mesh of a conventionalNACA
0016airfoil is deformedto yielda mesh for the supercriticalNational
Aerospace Laboratory (NLR) 7301 airfoil. Figure 9 shows the sur-
face geometry of the NACA 0016 and NLR 7301 airfoils.

The difference between these two surfaces is the grid movement
imposed onto the NACA 0016 surface mesh, rendering a deformed

Fig. 8 Pressure distribution of NACA 0012 with 10-deg trailing-edge
� ap de� ection angle, Mach 0.7, AOA = 0 deg, and Re = 2.0 £ £ 106 .

Fig. 9 Surface grid movement from NACA 0016 to NLR 7301 airfoil.

a) b)

Fig. 10 Mesh morphing from NACA 0016 airfoil to NLR 7301 airfoil.

� ow� eld mesh. Such a deformed mesh computed by the NBEM
approach is shown in Fig. 10a that correspondsto a mesh system for
the NLR 7301 airfoil. The given mesh for the NACA 0016 airfoil is
also shown, in Fig. 10b. The difference between these two meshes
is the grid deformation computed by the NBEM approach.

To verify the quality of this deformed mesh (de� ned as mesh
morphing from NACA 0016), we also generate a mesh of the NLR
7301 airfoil directly using a hyperbolic grid generator (de� ned as
mesh by hyperbolicgrid generator). CFL3D computationsfor these
two meshes at M D 0.753, AOA D 0 deg, and Re D 2:0 £ 106 are
performed, and the results are shown in Fig. 11. Note that the CP

distributionsof these two meshes are nearly identical,exceptat 20%
chord where a slight difference occurs.

Computational Ef� ciency
As discussed in the third section, solving Navier’s equations for

large-amplitude deformations using the NBEM approach requires
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Fig. 11 Pressure distribution of NLR 7301 airfoil at Mach = 0.753,
AOA = 0 deg, and Re = 2.0 £ £ 106.

an incremental procedure. For example, the deformed mesh of the
case 1 study (NACA 0012 airfoil at 20-deg pitch-up angle at about
50% chord) is obtained by dividing the 20-deg pitch-up angle into
� ve incremental steps, a 4-deg increment at each step. For mesh
morphing or static aeroelastic analysis, such an incremental pro-
cedure is probably not computationally expensive. However, for
time-marchingdynamic aeroelasticsimulation, the ef� ciency of the
NBEM becomes questionable.Here, we propose two ideas as future
works to improve the ef� ciency of NBEM; the � rst one is called
sample points at coarse grid and the second one the modal mesh
scheme.

Sample Points at Coarse Grid
The global shape function C .x; dn/ shown in Eq. (19) is de� ned

at the boundary nodes (the CFD surface mesh) and some sample
points in the domain. The suggests that these sample points in the
domain can be selected only at a coarse grid, rendering a reduced-
size nonlinear BEM problem. Once the reduced problem is solved,
the deformation at the � ne grids can be analyticallycomputed using
the global shape function solution.

Modal Mesh Scheme
The idea behind themodal mesh schemeis a simpleone. Dynamic

aeroelastic analysis usually employs the so-called modal approach,
which assumes that the displacementresponsecan be superimposed
by the natural modes of the structure, that is,

us D
mX

i D 1

’i qi (31)

where us is the displacement vector at the surface mesh de� ned in
Eq. (4), ’i and qi are the natural modal vector and the generalized
coordinates, respectively, and m is the number of the lower-order
modes.

For dynamic aeroelasticcomputationinvolving large amplitudes,
such as limit-cycleoscillations,one can usually de� ne a largest am-
plitude us max as a cutoff amplitudebefore the computation.Beyond
us max, the structure may reach its failure limit and the computa-
tional result would be of little interest to the aeroelastician. This
suggests that one can estimate the largest possible qi of each mode
(de� ned here as qi max ), so that the resulting displacement us com-
puted by Eq. (31) yields us max. With qi max at hand, the deformed
mesh corresponding to ’i qi max of each mode can be computed be-
fore the aeroelasticanalysis.However, this time, the deformed mesh
at each incremental step, de� ned as the incremental modal mesh, is
saved onto a database.By the use of this database,the instantaneous
deformed mesh during the time-marching aeroelastic computation
can be easily obtained by superimposingthe interpolateddeformed
mesh of each mode. This interpolation is performed based on the
instantaneousqi and the incremental modal meshes retrieved from
the database.

Once the modal mesh scheme is developed, NBEM becomes a
preprocessor as opposed to an integral part of the CFD aeroelastic
computation.This allows the aeroelasticianto ensure the quality of
the deforming mesh before a CFD aeroelastic simulation.

Conclusions
Numerical simulation of � ow problems with moving boundaries

arises in many scienti� c and engineering applications. These in-
clude, to name only a few, computational aeroelasticity, aerody-
namic shape design/optimization, tail buffeting, and a large class
of free surface problems. A robust and ef� cient deforming mesh
methodology is one of the key elements involved in the numerical
simulation of these � ow problems. The TFI scheme and the spring
analogy scheme can satisfy some of the deforming mesh require-
ments, but they lack the generality for all mesh systems, as opposed
to the uni� ed feature of the present NBEM approach.

The currentCFD methodshave reachedtheir maturity for compu-
tational aeroelastic simulation, necessitating a robust and effective
deforming mesh methodology. One such methodology is likely to
be the present NBEM approach.
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