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Deforming Mesh for Computational Aeroelasticity
Using a Nonlinear Elastic Boundary Element Method

Xiao-Wei Gao,* Ping-Chih Chen," and Lei Tangjf'
ZONA Technology, Inc., Scottsdale, Arizona 85251

A nonlinear elastic boundary element method (NBEM) approach is developed as an innovative deforming mesh
generator for computational aeroelastic simulation. The computational fluid dynamics (CFD) mesh is assumed
to be embedded in an infinite nonlinear elastic medium of a hardening material, leading to the formulation of a
pseudononlinear elastostatic problem. Whereas the CFD surface mesh is treated as a boundary element model and
the CFD flowfield grid as domain sample points, the NBEM approach solves Navier’s equations using a particular
solution scheme that removes the requirement of the domain integral in the conventional NBEM formulation.
The NBEM approach has a unified feature that is applicable to all mesh systems, including unstructured, multi-
block structured, and overset grids. An optimization strategy is employed to determine the optimum hardening
material properties by minimizing the mesh distortion in the viscous region where grid orthogonality must be
preserved. Three test cases are performed to demonstrate the robustness and effectiveness of the NBEM approach

for deforming mesh generation.

Introduction

URING the past two decades, research on the application of

computational fluid dynamics (CFD) methods to aeroelastic
analysis has been rapidly progressing. To date, implicit Navier-
Stokes algorithms with the geometric conservation law and
Newton-like subiterations for time-accurate aeroelastic simulation
of three-dimensional elastic bodies have been well established.!
Production-ready computer codes such as CFL3D (Ref. 4),
ENS3DAE (Refs. 5 and 6), and ENSAERO (Ref. 7) are nearly
completed and available to the U.S. aerospace industry. However,
application of these CFD codes on complex configurations such as
a whole aircraft with external stores or nacelles is still hampered
by the lack of a robust and efficient deforming mesh algorithm. In
general, there are two technical issues involved in the deforming
mesh algorithm for CFD aeroelastic simulations: 1) data transferal
between the structural finite element (FEM) grid and CFD surface
grid and 2) deforming the CFD flowfield grid.

Data Transferal Between the Structural FEM Grid
and the CFD Surface Grid

Here, the CFD surface grid is defined as the mesh on the surface
of the bodies where the moving boundary conditionis imposed. Be-
cause the CFD surface grid and the structural FEM grid could be
considerablydifferent, the aeroelasticcomputationrequires the data
transferal between these two grid systems. This technicalissue usu-
ally involves the transferal of displacements computed at the FEM
grid to the CFD surface grid and the transferal of loads computed at
the CFD surface grid back to the FEM grid.

Deforming the CFD Flowfield Grid

Once the displacementsat the CFD surface grid are obtained from
the FEM grid by the data transferal methodology just discussed, the
CFD deformed flowfield grid must conform to the deformed CFD
surface grid by a deforming flowfield grid algorithm. In the time-

Received 18 August 2000; revision received 25 January 2002; accepted
for publication 12 February 2002. Copyright © 2002 by the American In-
stitute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of
this paper may be made for personal or internal use, on condition that the
copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923;include the code 0001-1452/02
$10.00 in correspondence with the CCC.

*Engineering Specialist, 7430 East Stetson Drive, Suite 205; gao@
zonatech.com.

"Vice President, 7430 East Stetson Drive, Suite 205 pc@zonatech.com.
Member AIAA.

*Computational Fluid Dynamics Specialist, 7430 East Stetson Drive,
Suite 205; tangl @zonatech.com. Member ATAA.

1512

marching aeroelastic simulation, this deformed flowfield grid must
be updated at every time level according to the instantaneous de-
formed CFD surface grid positions. These deformed CFD flowfield
grids should satisfy four basic requirements:

1) No grid line crossover may occur to ensure the positivity of
the cell volume.

2) The grid orthogonality must be, at least nearly, preserved. It
is important to ensure such orthogonalityin the viscous region near
the surface grid.

3) The transition of the deformation from that of the surface grid
to the zero deformationin the far-field grid should be kept as smooth
as possible.

4) The clustering of the near-body grid cannot be compromised
as the body deforms. The grid must maintain its clustering in the
viscous layer.

Using an innovative structural boundary element method (BEM),
Chen and Jadic® and Chen and Hill° have developeda data transfor-
mation technique, called the BEM solver, that generates a universal
spline matrix to relate directly the displacementsand loads between
the CFD structural grid and the FEM grid. During the development
of the BEM solver, it was realized that the BEM can also be em-
ployedas adeforming flowfield grid algorithm. This can be achieved
by assuming the flowfield grid to be embedded in an infinite non-
linear elastic medium of a hardening material. In this paper, we will
focus on the discussion of such an approach for deforming flowfield
grid generation. Results of three test cases using such an approach
are also shown to demonstrate its robustness and applicability for
CFD computations.

Review of Existing Deforming Grid Algorithms

There are generally two kinds of approaches to generate deform-
ing grids: the algebraic method and the pseudostructural method.
The most commonly used algebraic method is the transfinite inter-
polation (TFI) scheme with the mesh orthogonality constraintat the
deforming surface.!” The TFI scheme offers an efficient deforming
grid algorithm for structured meshes, but it would be difficult to
apply TFI on an unstructured mesh. Also, an extension of the TFI
scheme to a multiblock structured mesh for a complex configuration
is by no means a trivial task.

The spring analogy scheme, first developed by Batina,'! belongs
to the pseudo-structuralmethods that model the mesh as a network of
lineal springs and solve the static equilibriumequations for this net-
work to determine the new locationsof the grid points. Farhat et al.!?
proposed a modified spring analogy by adding additional nonlinear
torsion springs to avoid the nonpositive cell volume problem asso-
ciated with the lineal spring network. By the use of a hybrid spring
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Fig.1 BEM for deforming flowfield grid.

analogy-TFI approach, Bartels!> has shown a two-dimensional
deforming one-block structured mesh for an oscillating spoiler
study. Because the numerical technique for solving the deforma-
tion of the spring network is essentially the structural FEM that
inherently requires an unstructured grid, the spring analogy scheme
can be directly applied to generate the deforming grid of the un-
structured mesh. On the other hand, because the structural FEM
does not allow grid mismatch between adjacent elements, the ap-
plication of the spring analogy scheme on a multiblock structured
mesh with grid mismatch on the block interfaces would be difficult.
Based on the same reason, it is obvious that the application of the
spring analogy on an overset mesh is not feasible.

Based on the precedingdiscussion, it is concluded that neither the
TFI technique nor the spring analogy scheme can be generalized to
deal with any given mesh system, that is, unstructured, multiblock
structured, and overset grids. By the use of a linear boundary ele-
ment method, Chen and Jadic® developed an exterior BEM solver
that has a unified feature for the deforming flowfield grid gener-
ation of all grid systems. When it is assumed that the CFD mesh
is to be embedded in an infinite linear elastic medium where the
CFD surface grid is treated as a deformable hollow slit (Fig. 1), a
pseudoelastostatic problem with an infinite elastic domain can be
formulated. This is a perfect boundary element problem because
BEM only requires modeling the surface of the body and, therefore,
is ideally suitable for dealing with the infinite elastic domain.

The starting point for the derivation of the pseudoelastostatic
BEM equations are Navier’s (equilibrium) equations in terms of
displacement u;, which in tensor notation have the form

Gu;jj+ (G +Mu;;; =0 ey

where A is the Lame coefficient and G is the shear modulus.

The BEM is based on the boundary integral equations of Navier’s
equations. The result is known as Somigliana’s identity that relates
the displacementat any point p (Fig. 1) to the displacement u, and
tractions f; on the boundary, that is,

”[(P)=/”i*sfs dl"—/ti’;uY dr ?2)
r r

where u, and £, are the Kelvin kernels of the displacementand trac-
tion, respectively, and I" denotes the boundary of the body. When
the CFD surface grid points are connected with the boundary ele-
ments to form a discretized BEM model, Eq. (2) can be recast into
the following matrix form:

”(P) = Gsptx _Hspus (3)

where G, and H, are the so-called traction and displacement co-
efficient matrices, respectively, and the subscripts sp refer to the
surface-to-flowfield point influence.

A special treatment of the boundary integral equation (2) is re-
quired for points on the boundary. In matrix form, the equation that
relates the displacement u, and traction f; on the boundary is

HSSMS = GSSZ’S (4)

where the subscripts ss refers to the surface-to-surfaceinfluence.

Substituting Eq. (4) into Eq. (3) yields the exterior BEM solver
that reads

u(p) = Bu, 5)
where
B=G,G_'H,—-H, 6)

Note that the matrix B is independent of the deformation u; and
invariantduring the time-marchingaeroelasticcomputationbecause
it is evaluated on the undeformed mesh. Also, because the point p
can be assigned anywhere in the flowfield, the generation of matrix
B does not require the connectivity information of the flowfield grid
points and, therefore, is independentof the mesh system. Thus, the
exterior BEM solver offers several technical merits over the spring
analogy scheme as follows:

1) It can be generalized to deal with all grid systems.

2) Because the computationof u (p) is a point-by-pointprocedure,
it can be easily parallelized.

3) Because the elastostatic formulation of BEM involves both
the volume modulus (equivalent to the lineal spring) and the shear
modulus (equivalent to the torsion spring) of a continuous elastic
medium, the transition of the grid deformation is always smooth.

4) The zero deformation requirementin the far-field grid is inher-
ently satisfied because of the infinite elastic medium characteristics.

However, for problems with a relatively large mesh motion am-
plitude, the exterior BEM solver suffers from the shortcoming of
the linear elastic assumption. An example of this is shown in Figs. 2
and 3. Figure 2 shows a given undeformed viscous mesh of a NACA
0012 airfoil. By the imposition of a 20-deg pitch-up angle about the

Fig.2 Given undeformed mesh of NACA 0012 airfoil.
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Fig.3 Unacceptable deformed mesh by the linear exterior BEM solver.
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50% chord, the resulting deformed mesh using the exterior BEM
solver is depicted in Fig. 3. (For clarity, only a coarse deformed
mesh is shown.) A large distortion of the mesh to the extent that
grid line crossover occurs near the leading and trailing edges can
be seen. Also, the grid orthogonality in the viscous region is de-
stroyed. Because the imposed displacement occurs on the surface
mesh only, large elastic stresses are concentrated near the surface
and decay rapidly toward the far field. Because of the linear elastic
assumption, a large stress can induce a large strain, implying large
distortion of the mesh in the high-stress region.

To overcome this problem, it is apparent that a nonlinear elastic
medium of hardening material must be employed. A typical stress—
strain relationship of the hardening material is shown in Fig. 4.
Within this hardening material, high stress will not necessarily yield
high strain, thereby reducing the mesh distortion in the high-stress
region. However, solving the elastostatic problem with hardening
material requires a nonlinear elastic BEM approach.

Nonlinear Elastic BEM Formulation

Innonlinearelastic BEM for strain hardening materials, the stress
is no longer the linear response to the strain, and the quantities are
usually expressed in incremental forms. With reference to Fig. 4,
the stress increment can be decomposed into two parts, as follows

where the over dot indicates that it is an increment and c'rf?j is the
linear part, which is determined by Hook’s law as

dfj = G Djjuén ®)
D[jkl =[2v/(1 = 2”)]3zj3k1 + 3[/(3]1 + 3[13,'/( 9

in which v is the Poisson ratio, G is the shear modulus, and &, is
the strain increment.

The nonlinearstress incrementg;? is assumed to have the similar
relationshipto Eq. (8), but the shear modulus is a function of strain,
that is,

df\; = GG'(Jy, D) Dijuén = G'(Jy, Jz)ifg (10)

To minimize the mesh distortion, the high-stress region near the
surface mesh suggests that G'(Jy, J,) should represent a strongly
hardeningfunctionof strain. Such a functionis expressedas follows:

G'(Jy, ) = e /1 +F% an

Here, o and B are weighting factors to measure the contributionsof
the effective volume strain J; and the shear strain J; to the hardening
behaviorof G'(J,, J,). J; and J, are the first and second invariants
of the strain tensor and the deviatorical strain tensor, respectively,
which are defined as

Ji = (ew)’ (12)

5 =Ltel g (13)

1
2%ij%ij

where ¢;; is the deviatorical tensor

! fd P
Eij = &ij

J - %Ekkfsij (14)

Jy and J, are related to volume and shear strains, respectively.

Navier’s equations with the nonlinear stress c'r[’}’ can be written as

G j; + (G + Wit i = =6 (15)
In the conventionalnonlinear BEM formulation, the integral bound-
ary equations for Navier’s equation (15) involve a domain integral
of the nonlinear stress. The computations of this domain integral
require the discretization of the problem domain into volume cells.
This destroys one of the major advantages of adopting the BEM as
a mesh-system independent algorithm. Banerjee and Henry'* pro-
posed a particular solution scheme that removes the requirement of
the volume cells. This particular solution scheme assumes that the
solutions of Eq. (15) consist of two parts, that is,

iy = i+ il (16)

where u{ is referred to as the complementary solution, which satis-
fies the homogeneous Navier’s equations (1), and can be obtained
from the linear BEM equations described in the preceding section.
The displacement ;] in Eq. (16) is referred to as the particular
solutions, which satisfies Eq. (15).

Before solution, the distribution of the nonlinear stresses c'r[’}’ are
unknown. We assume that c'r[’}’ can be derived from a biharmonic

function h[ that is,

s
UZ = _h[j.mmnn (17)

Based on this assumption, the displacement particular solution can

be found® as

i = (1/Ghij ju = [1/2G (1 = )]y g (18)

From Eqgs. (17) and (18), we can see that, once we know the dis-
tribution of £;;, the particular solutions for nonlinear stresses and
displacements can be determined. To achieve this, a global shape
function C(x,d,) (Ref. 14) is used for interpolation of #;;, as
follows:

N
hij (@) = ) Cx, d)gi(dy) (19

n=1
where ¢, ; are constants to be determined and
C(x,d,) = A(p* = bp®) (20)

Here, A is generallytaken as the fourth power of some characteristic
length associated with the BEM model, b can generally be set equal
to unity, and p is the distance between x and d,. Usually, d, are
chosen to be the boundary nodes and some sample points in the
domain.

By substituting Eq. (19) into Egs. (17) and (18), and with the
results being written in matrix form, we have

" =K¢ (1)
i’ = D¢ (22)

in which K is a diagonal matrix and ¢ is a vector of qéij at all sample
points. The elements are

k(x,d,) = C(x,dy) ur = A(120 — 360bp) (23)

The matrix D in Eq. (22) is formed from the following expression:
d[jk(x» d,) = (1/G)C(x, dn).jllaik —[1/2G6(1 = v)]C(x, dn).jki

(24)

Note that the matrix K in Eq. (21) is invertible, and so the vector ¢
can be expressedin terms of the vector & . With this in mind, and
using the preceding linear BEM equations together with Egs. (7),
(16), (21), and (22), the nonlinear BEM equations (in matrix form)
can be formed as follows:

A’X =Y + EP 6N (25)

6 =A"X +Y° +E°GV (26)
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where A® and A* are coefficient matrices formed by boundary in-
tegrals and E® and E° are nonlinear coefficient matrices formed by
global functions. Note that Egs. (25) and (26) are very similar to
those derived for elastic-plastic problems!® where the matrices E”
and E? are formed by domain integration.

Combining Egs. (7), (10), (25), and (26) yields

Ast =Y (27)

where
A=1+(I-E —A"A" 'E")G (28)
Y=Y +A4%A" Y (29)

The system of Egs. (27) is a nonlinear equation set because the co-
efficient matrix A is the function of strains. The standard Newton-
Raphson iterative scheme!® can be used to solve this equation set.
Close inspection of Eq. (28) shows that only the matrix G’, which
is a diagonal matrix and formed from Eq. (11), is the function of
strains. Therefore, quick convergence can be achieved in the itera-
tion procedure.

The particularsolutionscheme describedforsolvingthenonlinear
Navier’s equation is an ideal solution scheme for CFD deforming
grid generation. Only the CFD flowfield grids are used as sample
points in the domain, thereby removing the need of connectivity
information of the CFD mesh system. For large-amplitude surface
deformation, the computational procedure involves an incremental
process that solves the unknown boundary traction and also builds
upinformationaboutthe incremental solutions at the domain sample
points.

Optimization for Optimum Hardening
Material Properties

Because the present NBEM approach is based on a pseudoelas-
tostatic formulation, the hardening behavior of the elastic medium
(shown in Fig. 1) dominates the quality of the deformed mesh. To
determineautomaticallythe optimumhardeningmaterial properties,
we use an optimization procedure to search for the best values of «
and B in Eq. (11). The key issue in formulating such an optimization
procedure is how to define an objective function that can relate the
quality of the deformed mesh to the design variables, namely, « and
B. Because minimum strain is equivalent to minimum mesh dis-
tortion, the objective function to be minimized in the optimization
procedureis defined as

f@.py=Y (e (30)

=1

where f is the objective function, ¢;; is the strain tensor at grid /,
and n is the number of grid points where the strain tensor ¢;; is
evaluated. These grid points are selected like those in the viscous
region, where preserving the grid orthogonality is important.

Test Cases and Discussion

Three two-dimensionaltest cases are selected to demonstrate the
robustness and effectiveness of the NBEM approach. CFD compu-
tations using the deformed mesh generated by the NBEM are per-
formed, and the resulting pressure distributions are used to assess
the quality of the deformed mesh.

Case 1: NACA 0012 Airfoil at 20-Degree Pitch-Up
Angle at About 50% Chord

For a given undeformed mesh of a NACA 0012 airfoil (Fig. 2), a
surface deformationcorrespondingto a 20-deg pitch-up angle about
the 50% chord is imposed on the surface mesh. The overall de-
formed mesh computed by the NBEM approachis shown in Fig. Sa.
As expected, the far-field mesh is practically undeformed because
of the characteristics of the infinite elastic medium. The zoomed-
in view of the deformed mesh near the airfoil surface depicted in
Fig. 5b clearly shows the smooth transition of the deformation from
the surface mesh to the far-field mesh. For clarity, the deformed
mesh near the leading and trailing edges is further expanded and
shown in Figs. 5¢c-5f. Note that the orthogonality of the deformed
mesh in the viscous region is preserved. The transition of the de-
formed mesh from the trailing edge to the wake region appears to

i

e)

c) )

Fig.5 Deformed mesh of NACA 0012 airfoil section at 20-deg pitch-up
angle at about 50 % chord.

be smooth, forming a curved wake surface grid whose deformation
decays rapidly from the trailing edge to downstream.

In theory, the CFD result of a deformed mesh at 20-deg pitch-up
angle and 0-deg angle of attack (AOA) (6 =20 deg, AOA =0 deg)
should be the same as that of the correspondingundeformed mesh at
0 =0degand AOA = 20 degif the deformed meshis of good quality.
To verify this, two Navier-Stokes computations using the CFL3D
code with the Spalart-Allmaras model were performed at M = (.7
and Re=2.0 x 10°, one on the deformed mesh at AOA =0 deg
and the second one on the undeformed mesh at AOA =20 deg.
Excellent agreement of the surface pressure, Cp, distributions for
these two meshes is obtained and shown in Fig. 6. Note that at a
20-deg incidence angle, the NACA 0012 is already beyond its stall
AOA. This is to say that the behavior of the separated flow on the
uppersurfaceof the airfoilis very sensitiveto the quality of the mesh,
particularly at the leading edge. The excellentagreement of the Cp
shown in Fig. 6 clearly demonstrates the capability of the NBEM
approach for high-quality deforming grid generation in terms of the
smoothness and orthogonality of the mesh.

Case 2: NACA 0012 Airfoil at 10-Degree
Trailing-Edge Flap Deflection Angle

Control surface deflection creates a discontinuity in slope across
the hinge. For the pseudostructuralmethod like the spring analogy,
this gives a stress concentrationaround the hinge that may destroy
the quality of the deformed mesh. To show that this is not the case
for the NBEM approach,a 10-degtrailing-edgeflap deflection angle
with hinge at the 75% chord of the NACA 0012 airfoil is imposed on
the surface mesh. Figure 7 shows the NBEM computed deformed
mesh where the smoothness and the near-surface orthogonality of
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Fig. 6 Steady pressure of deformed and undeformed mesh of NACA
0012 airfoil section at 20-deg pitch-up angle at about 50% chord,
Mach 0.7, and Re = 2.0 x 105.
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Fig. 7 Deformed mesh of NACA 0012 airfoil section with a 10-deg
trailing-edge flap with deflection angle.

the deformation can be clearly seen. The Cp distribution of this
deformed mesh (Fig. 8) computed by the CFL3D code at M = 0.7,
AOA =0 deg, and Re =2.0 x 10° shows a spike on the upper sur-
face at the hinge location due to the slope discontinuity. This ex-
pected spike indicates that the slope discontinuity at the hinge is
well captured by the NBEM approach.

Case 3: Mesh Morphing from NACA 0016 Airfoil
to NLR 7301 Airfoil

Changing the surface mesh to obtain a conforming mesh accord-
ing to the new surface, but without directly using a grid generator,
is defined here as mesh morphing. Mesh morphing is an essential
element involved in aerodynamic optimization using CFD methods
because it is an automated procedure and can provide an updated
mesh at each design cycle. To show that the NBEM approach can
be used for mesh morphing, a given mesh of a conventional NACA
0016airfoilis deformedto yield a mesh for the supercriticalNational
Aerospace Laboratory (NLR) 7301 airfoil. Figure 9 shows the sur-
face geometry of the NACA 0016 and NLR 7301 airfoils.

The difference between these two surfaces is the grid movement
imposed onto the NACA 0016 surface mesh, rendering a deformed

0.5
Hinge Line
1 Location
1.5 T T T T
0 0.2 0.4 0.6 0.8 1
x/c

Fig. 8 Pressure distribution of NACA 0012 with 10-deg trailing-edge
flap deflection angle, Mach 0.7, AOA =0 deg, and Re =2.0 X 10°.

NLR 7301

NACA 0016
Fig.9 Surface grid movement from NACA 0016 to NLR 7301 airfoil.

NACA 0016 NLR 7301

s

LE\TL“EW,

a) b)
Fig.10 Mesh morphing from NACA 0016 airfoil to NLR 7301 airfoil.

flowfield mesh. Such a deformed mesh computed by the NBEM
approachis shown in Fig. 10a that correspondsto a mesh system for
the NLR 7301 airfoil. The given mesh for the NACA 0016 airfoil is
also shown, in Fig. 10b. The difference between these two meshes
is the grid deformation computed by the NBEM approach.

To verify the quality of this deformed mesh (defined as mesh
morphing from NACA 0016), we also generate a mesh of the NLR
7301 airfoil directly using a hyperbolic grid generator (defined as
mesh by hyperbolic grid generator). CFL3D computationsfor these
two meshes at M =0.753, AOA =0 deg, and Re =2.0 x 10° are
performed, and the results are shown in Fig. 11. Note that the Cp
distributionsof these two meshes are nearly identical,exceptat 20%
chord where a slight difference occurs.

Computational Efficiency

As discussed in the third section, solving Navier’s equations for
large-amplitude deformations using the NBEM approach requires
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Fig. 11 Pressure distribution of NLR 7301 airfoil at Mach=0.753,
AOA =0 deg, and Re=2.0 X 10°,

an incremental procedure. For example, the deformed mesh of the
case 1 study (NACA 0012 airfoil at 20-deg pitch-up angle at about
50% chord) is obtained by dividing the 20-deg pitch-up angle into
five incremental steps, a 4-deg increment at each step. For mesh
morphing or static aeroelastic analysis, such an incremental pro-
cedure is probably not computationally expensive. However, for
time-marching dynamic aeroelastic simulation, the efficiency of the
NBEM becomes questionable.Here, we propose two ideas as future
works to improve the efficiency of NBEM; the first one is called
sample points at coarse grid and the second one the modal mesh
scheme.

Sample Points at Coarse Grid

The global shape function C (x, d,) shown in Eq. (19) is defined
at the boundary nodes (the CFD surface mesh) and some sample
points in the domain. The suggests that these sample points in the
domain can be selected only at a coarse grid, rendering a reduced-
size nonlinear BEM problem. Once the reduced problem is solved,
the deformation at the fine grids can be analytically computed using
the global shape function solution.

Modal Mesh Scheme

The idea behind the modal mesh schemeis a simple one. Dynamic
aeroelastic analysis usually employs the so-called modal approach,
which assumes that the displacementresponse can be superimposed
by the natural modes of the structure, that is,

m

us = Z%‘LI[ 3D

i=1

where u; is the displacement vector at the surface mesh defined in
Eq. (4), ¢; and g; are the natural modal vector and the generalized
coordinates, respectively, and m is the number of the lower-order
modes.

For dynamic aeroelasticcomputationinvolving large amplitudes,
such as limit-cycle oscillations,one can usually define a largest am-
plitude u; ,,,x as a cutoff amplitude before the computation. Beyond
Usmax, the structure may reach its failure limit and the computa-
tional result would be of little interest to the aeroelastician. This
suggests that one can estimate the largest possible ¢; of each mode
(defined here as g; . ), SO that the resulting displacement u, com-
puted by Eq. (31) yields u, .. With g; nax at hand, the deformed
mesh corresponding to ¢;g; m. 0f each mode can be computed be-
fore the aeroelasticanalysis. However, this time, the deformed mesh
at each incremental step, defined as the incremental modal mesh, is
saved onto a database. By the use of this database, the instantaneous
deformed mesh during the time-marching aeroelastic computation
can be easily obtained by superimposing the interpolated deformed
mesh of each mode. This interpolation is performed based on the
instantaneous g; and the incremental modal meshes retrieved from
the database.

Once the modal mesh scheme is developed, NBEM becomes a
preprocessor as opposed to an integral part of the CFD aeroelastic
computation. This allows the aeroelasticianto ensure the quality of
the deforming mesh before a CFD aeroelastic simulation.

Conclusions

Numerical simulation of flow problems with moving boundaries
arises in many scientific and engineering applications. These in-
clude, to name only a few, computational aeroelasticity, aerody-
namic shape design/optimization, tail buffeting, and a large class
of free surface problems. A robust and efficient deforming mesh
methodology is one of the key elements involved in the numerical
simulation of these flow problems. The TFI scheme and the spring
analogy scheme can satisfy some of the deforming mesh require-
ments, but they lack the generality for all mesh systems, as opposed
to the unified feature of the present NBEM approach.

The current CFD methods have reached their maturity for compu-
tational aeroelastic simulation, necessitating a robust and effective
deforming mesh methodology. One such methodology is likely to
be the present NBEM approach.
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